Overview

- Reading
 B. Razavi Chapter 4.

- Introduction

 Offering many useful properties, differential operation has become the dominant choice in today's high-performance analog and mixed-signal circuits. This lecture deals with the analysis and design of CMOS differential amplifiers. It contains:

 - Review of single-ended and differential operation.
 - Analysis of the large-signal and small-signal behavior.
 - The common-mode rejection.
 - Differential pair with diode-connected and current-source loads as well as differential cascode stages.
Single-ended and differential operation

- Single-ended and differential signals

![Diagram of single-ended and differential signals](image)

- What are “common-mode” (CM) and “differential mode” (DM)?

Advantages of differential operation

- Reduction of coupling

![Diagram of reduction of coupling](image)

- Common-mode rejection occurs with noisy supply voltages

![Diagram of common-mode rejection](image)
Advantages of differential operation (cont’d)

- Reduction of coupled noise by differential operation
- Increase in maximum achievable voltage swing
- Simpler biasing
- Higher linearity

Simple differential circuit

(a) [Diagram]

(b) [Diagram]
Basic differential pair

- Schematic — source-coupled pair

The differential pair employs a current source I_{SS} to make $I_{D1} + I_{D2}$ independent of $V_{in,CM}$. Thus, if $V_{in1} = V_{in2}$, the bias current of each transistor equals $I_{SS}/2$ and the output common-mode level is $V_{DD} - R_D I_{SS}/2$.

Basic differential pair (cont’d)

- Qualitative analysis

Input/output characteristics
Common-mode characteristics

- Common-mode schematic

- Common-mode input/output characteristics

Common-mode characteristics

- Input common-mode range – M_1, M_2 in saturation

$$V_{GS1} + (V_{GS3} - V_{TH3}) \leq V_{in,CM} \leq \min \left[V_{DD} - R_D \frac{I_{DS}}{2} + V_{TH}, \quad V_{DD} \right]$$

- The small-signal differential gain of a differential pair vs. the input CM level
Output swing of a differential pair

- For M_1 and M_2 to be saturated, each output can go as high as V_{DD} but as low as approximately $V_{in,CM} - V_{TH}$. In other words, the higher the input CM level, the smaller the allowable output swings. For this reason, it is desirable to choose a relatively low $V_{in,CM}$.

- An trade-off exists between the maximum value of $V_{in,CM}$ and differential gain. Similar to a simple CS stage, the gain of a differential pair is a function is a function of the dc drop across the load resistors. Thus, if $R_D IS / 2$ is large, $V_{in,CM}$ must remain close to ground potential.

Quantitative analysis

- Differential pair

\[
V_{out1} = V_{DD} - R_D I_{D1}, \quad V_{out2} = V_{DD} - R_D I_{D2}
\]

\[
[R_{D1} = R_{D2} = R_D]
\]

\[
V_{out1} - V_{out2} = R_D (I_{D2} - I_{D1})
\]

Assuming the circuit is symmetric, M_1 and M_2 are saturated, and $\lambda = 0$, $V_{in1} - V_{in2} = V_{GS1} - V_{GS2}$

For a square-law device, we have:

Therefore,

\[
V_{in1} - V_{in2} = \frac{2I_{D1}}{\mu C_{ox} W L} - \frac{2I_{D2}}{\mu C_{ox} W L}
\]

Recognizing that $I_{D2} + I_{D1} = I_{SS}$, we obtain
Quantitative analysis (cont’d)

\[(V_{m1} - V_{m2})^2 = \frac{2}{\mu_c C_{ox}} \left(\frac{W}{L} \right) (I_{SS} - 2I_D) \]

\[\frac{1}{2} \mu_c C_{ox} \left(\frac{W}{L} \right) (V_{m1} - V_{m2})^2 - I_{SS}^2 = -2I_D \frac{I_{D2}}{I_D} \]

Squaring the two sides again and

\[4I_D I_{D2} = (I_{D1} + I_{D2})^2 - (I_{D1} - I_{D2})^2 = I_{SS}^2 - (I_{D1} - I_{D2})^2 , \]

we arrive at

\[I_{D1} - I_{D2} = \frac{1}{2} \mu_c C_{ox} \left(\frac{W}{L} \right) (V_{m1} - V_{m2}) \]
\[\sqrt{\mu_c C_{ox} \left(\frac{W}{L} \right) } - (V_{m1} - V_{m2}) \]

Denoting \(\Delta I_D = I_{D1} - I_{D2} \) and \(\Delta V_m = V_{m1} - V_{m2} \), we can show that

\[\frac{\partial \Delta I_D}{\partial \Delta V_m} = \frac{1}{2} \mu_c C_{ox} \left(\frac{W}{L} \right) \frac{4I_{SS}}{\sqrt{\mu_c C_{ox} \left(\frac{W}{L} \right) } - 2\Delta V_m^2} \]

\[- \frac{4I_{SS}}{\sqrt{\mu_c C_{ox} \left(\frac{W}{L} \right) } - \Delta V_m^2} \]

Quantitative analysis (cont’d)

- For \(\Delta V_m = 0 \), \(G_m = \frac{\partial \Delta I_D}{\partial \Delta V_m} \bigg|_{\Delta V_m=0} = \sqrt{\mu_c C_{ox} \left(\frac{W}{L} \right) I_{SS}} \)

- Since \(\Delta V_{out} = V_{out1} - V_{out2} = R_D \Delta I_D = R_D G_m \Delta V_m \)

the small-signal differential gain is given as

\[|A_m| = G_m R_D = \sqrt{\mu_c C_{ox} \left(\frac{W}{L} \right) I_{SS} \cdot R_D} \]

- \(G_m = 0 \) for \(\Delta V_m = \frac{2I_{SS}}{\sqrt{\mu_c C_{ox} \left(\frac{W}{L} \right) } \cdot \Delta V_m} \)

- Variation of \(I_D \) and \(G_m \) vs. \(\Delta V_m \)

Analog-Circuit Design 4-12 Ching-Yuan Yang / EE, NCHU

Analog-Circuit Design 4-13 Ching-Yuan Yang / EE, NCHU
Quantitative analysis (cont'd)

For a zero differential input, \(I_{D1} = I_{D2} = I_{DS} / 2 \), and hence

\[(V_{GS} - V_{TH})_{1,2} = \frac{I_{DS}}{\mu C_{ox}} \frac{W}{L} = \frac{\Delta V_{in}}{\sqrt{2}} \]

Increasing \(\Delta V_{in} \) to make the circuit more linear inevitably increases the overdrive voltage of \(M_1 \) and \(M_2 \). For a given \(I_{DS} \), this is only by reducing \(W/L \) and hence the \(g_m \) of the transistors.

Quantitative analysis (cont'd)

- Input/output characteristic

- As \(W/L \) increases, \(\Delta V_{in} \) decreases, narrowing the input range across which both devices are on.

- As \(I_{DS} \) increases, both the input range and the output current swing increase.
Differential pair with small-signal inputs

- Scheme – M_1 and M_2 sat., small signals V_{in1} and V_{in2}.

- Analysis

Differential pair sensing one input signal. Circuit viewed as a CS stage degenerated by M_2. Equivalent circuit.

Differential pair with small-signal inputs (cont’d)

- Replacing M_1 by a Thevenin equivalent

M_2 operates as a CG stage, exhibiting a gain equal to

$$\frac{V_x}{V_{in2}} = \frac{R_0}{g_m + \frac{1}{g_m}}$$

The overall voltage for V_{in1} is $(V_X - V_Y)_{Due to V_{in1}} = -\frac{2R_0}{g_m + \frac{1}{g_m}}V_{in1}$

which, for $g_{m1} = g_{m2} = g_m$ reduces to is $(V_X - V_Y)_{Due to V_{in1}} = -g_mR_0V_{in1}$.

Similarly, $(V_X - V_Y)_{Due to V_{in2}} = -g_mR_0V_{in2}$. Thus, we have

$$\frac{(V_X - V_Y)_{Due to V_{in1}}}{(V_X - V_Y)_{Due to V_{in2}}} = \frac{V_{in1}}{V_{in2}} = -g_mR_0$$
Differential and common-mode components

\[V_{in1} = \frac{V_{in1} - V_{in2}}{2} + \frac{V_{in1} + V_{in2}}{2} \] (a)

\[V_{in2} = \frac{V_{in2} - V_{in1}}{2} + \frac{V_{in1} + V_{in2}}{2} \] (b)

Superposition for differential and common-mode signals

\[V_{in1} = \frac{V_{in1} - V_{in2}}{2} + \frac{V_{in1} + V_{in2}}{2} \] (a)

\[V_{in2} = \frac{V_{in2} - V_{in1}}{2} + \frac{V_{in1} + V_{in2}}{2} \] (b)
Differential and common-mode components (cont’d)

- $\lambda \neq 0$
 - Differential-mode operation
 - Common-mode operation

\[
V_x = -g_m(R_D)_{\lambda}(V_{m1} - V_{m2})/2 \\
V_y = -g_m(R_D)_{\lambda}(V_{m2} - V_{m1})/2 \\
V_x - V_y = -g_m(R_D)_{\lambda}
\]

If the circuit is fully symmetric and I_{SS} an ideal current source, the current drawn by M_1 and M_2 from R_{D1} and R_{D2} is exactly equal to $I_{SS}/2$ and independent of $V_{in,CM}$. Thus, V_x and V_y experience no change as $V_{in,CM}$ varies.

Common-mode response

- Differential pair sensing CM input

\[
R_{SS} : \text{the output impedance of current source.}
\]

\[
A_{v,CM} = \frac{V_{out}}{V_{in,CM}} = -\frac{R_D/2}{1 + R_{SS}} \quad (\lambda = \gamma = 0)
\]
Common-mode response with mismatch

- Resistor mismatch

\[\Delta V_X = - \Delta V_{in,CM} \frac{g_m}{1 + 2g_m R_{SS}} R_D \]
\[\Delta V_Y = - \Delta V_{in,CM} \frac{g_m}{1 + 2g_m R_{SS}} (R_D + \Delta R_D) \]

A CM change at the input introduces a differential component at the output.

- Effect of CM noise

Common-mode response with finite tail cap.

\[\Delta + = \Delta - = \Delta \]

Thus, the circuit converts input CM variations to a differential error by a factor equal to

\[A_{CM-DM} = - \frac{\Delta g_m R_D}{(g_{m1} + g_{m2}) R_{SS} + 1} \]

\[A_{CM-DM} \]: CM to DM conversion

\[\Delta g_m = g_{m1} - g_{m2} \]
Common-mode rejection ratio (CMRR)

- **Definition** \(\text{CMRR} = \frac{A_{CM}}{A_{CM-DIFF}} \)
- If only \(g_m \) mismatch is considered

 - Differential mode (assume \(V_{in1} = -V_{in2} \))
 \[
 |A_{CM}| = \frac{R_D}{2} \frac{g_{m1} + g_{m2} + 4g_m R_{os}}{1 + (g_{m1} + g_{m2}) R_{os}}
 \]

 - Common-mode to differential-mode conversion
 \[
 A_{CM-DIFF} = -\frac{\Delta g_m R_D}{(g_{m1} + g_{m2}) R_{os} + 1}
 \]

 - **CMRR**
 \[
 \text{CMRR} = \frac{g_{m1} + g_{m2} + 4g_m R_{os}}{2\Delta g_m}
 = \frac{g_m}{\Delta g_m} \left[1 + 2g_m R_{os} \right]
 \]

Differential pair with MOS loads

- **Diode-connected load**
 \[
 A_v = -g_{mN} \left(g_{mP} \left[V_{dd} \right] \right)
 \approx \frac{g_{mN}}{g_{mP}}
 = \left[\frac{\mu_p (W/L)_N}{\mu_p (W/L)_P} \right]
 \]

- **Current-source load**
 \[
 A_v = -g_{mN} \left(r_{on} \left[V_{dd} \right] \right)
 \]
Differential pair with MOS loads (cont’d)

- Diode-connected + current source loads

- Cascode differential pair

\[
|A_v| \approx g_{m1}(g_{m3}r_{o3}r_{o7})(g_{m5}r_{o5}r_{o7})
\]

Half circuit

Variable-gain amplifier (VGA)

- Simple VGA

 \[A_v = \frac{V_{out}}{V_{in}} \text{ varies from zero (if } I_{D3} = 0 \text{) to a maximum value given by voltage headroom limitations and device dimensions.} \]

 \[\text{VGAs find application in systems where the signal amplitude may experience large variations and hence requires inverse change in the gain.} \]

- Two stages providing variable gain

Consider two differential pairs that amplify the input by opposite gain. We now have \(V_{out1}/V_{in} = -g_{m}R_{D1} \) and \(V_{out2}/V_{in} = g_{m}R_{D2} \), where \(g_{m} \) denotes the transconductance of each transistor in equilibrium. If \(I_1 \) and \(I_2 \) vary in opposite directions, so do \(|V_{out1}/V_{in}| \) and \(|V_{out2}/V_{in}| \).
Gilbert cell

- $V_{out} = V_{out1} + V_{out2} = A_1V_{in} + A_2V_{in}$

- If $I_1 = 0$, then $V_{out} = +g_mR_DV_{in}$
 - If $I_2 = 0$, then $V_{out} = -g_mR_DV_{in}$
 - For $I_1 = I_2$, the gain drops to zero.

- V_{cont1} and V_{cont2} vary I_1 and I_2 in opposite directions such that the gain of the amplifier changes monotonically. For $V_{cont1} = V_{cont2}$, the gain is zero.

- For $M_{5,6}$ to operate in saturation, the CM level of V_{cont} must be such that $V_{CM,cont} ≤ V_{CM,in} - V_{GS1} + V_{TH5,6}$.

Gilbert cell (cont’d)

- Gilbert cell sensing the input voltage by the bottom differential pair

- For very positive V_{cont}, $V_{out} = g_{m5,6}R_DV_{in}$.
 - For very negative V_{cont}, $V_{out} = -g_{m5,6}R_DV_{in}$.